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SUM MARY 

The formation of large gas bubbles at submerged orifices is investigated numerically with a two-dimensional. 
transient, finite difference model using a volume fraction specification to track the movement of the 
gas-liquid interface. Experimentally observed features of large-bubble formation such as the initial toroidal 
shape of the bubbles and the penetration of liquid down the pipe centreline are well predicted by the model. 
The expected oscillatory nature of growth is also observed. The bubble departure volume corresponds to 
experiments and to the model of Davidson and Schuler. At present the simulations d o  not extend far enough 
to investigate multiple-bubble ejection and important bubble-to-bubble interactions during growth and 
after departure. 
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INTRODUCTION 

Bubble formation at  submerged orifices has been investigated by many people. However, the 
literature is dominated by work with small orifices ( < 2  cm). A good account of bubbling 
behaviour from small orifices is provided by McCann and Prince.' They classified three general 
bubbling regimes: static, dynamic and turbulent. Static bubbling is governed purely by buoyancy 
and surface tension and a simple static balance of these forces predicts the bubble departure 
volume. As the gas flow rate and orifice diameter increase, inertial forces become important and 
the dynamic regime is entered. The resulting growth and immediate post-departure behaviour 
become much more complicated. The bubble generation rate becomes large enough that there is 
significant bubble-to-bubble interaction and bubble releases can n o  longer be treated a\ simple 
independent events. To distinguish between different types of interaction, McCann and Prince' 
further subdivide the dynamic regime into single and double bubbling, single and double pairing, 
and delayed release. Upon further flow rate increases, the turbulent regime is entered where the 
flow becomes more like a jet and no distinct periodic bubble formation occurs. 

The literature concerning bubble formation from large orifices is much more sparse. Large 
bubbles are of interest in applications such a5 underwater detonations,2, fluidized beds.4 nuclear 
reactor accident analysis', ' and the blow-out of undersea oilwells.q, The fundamental difference 
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between large and small bubbles is the reduced magnitude of the stabilizing surface tension forces. 
For bubbles not attached to a gas supply, increasing size results in shape changes for a steadily 
rising bubble which progress from spherical (for small bubbles) through oblate spheroids and 
finally to spherical caps. A good discussion of this progression is provided by Harper.' The 
behaviour and maximum size of spherical caps are discussed by Davies and Taylor" and 
Batchelor." A measure of what constitutes a 'small' bubble is usually the Eotvos number (ratio of 
buoyancy to surface tension forces) as discussed in Reference 12. Large spherical air bubbles in 
water do not exist unless they are growing. Once growth stops, they quickly shatter into smaller 
bubbles. The large-bubble literature, then, is concerned with bubbles growing at orifices5 - or by 
the action of expanding gases.2' 

Chen and Dhir6 considered the dynamics of a boiling water reactor pressure suppression pool 
when gas was injected into it through a large downward-facing pipe. Pipe diameters investigated 
were from 9 to 95 mm with air flow rates of 3-80 Is-'. A large part of their work was concerned 
with the vent-clearing process and few details of bubble volume or shape upon departure were 
reported. Topham' injected nitrogen through orifices ranging from 6.4 to 145 mm at flow rates up 
to 32 1 s- '. Rounded bubbles growing from the orifice, releasing and quickly bursting into smaller 
fragments were observed. As the flow rate was increased, the bubbles become flattened horizon- 
tally and breakaway was again characterized by violent bursting. No data concerning departure 
volume or bubble interaction were reported. 

The numerical investigation in this paper parallels an experimental investigation' of large- 
bubble formation in an apparatus shown schematically in Figure 1. The two key parameters 
varied in this investigation were the pipe diameter (254GD < 101.6 mm) and the gas flow rate 
(5,<Q<50 1s-I). Bubbles were produced in a 1.22 m square by 1.22 m high cast acrylic water 
tank. Air flow to the apparatus was measured by a circular arc, critical venturi meter. After the 
flow meter, the air entered a plenum chamber mounted under the centre of the tank. Pipes of 
various sizes were mounted on the plenum chamber so  that they protruded through the centre of 
the tank floor. Bubble growth at the pipe exit was recorded with a 16mm rotating prism, 
high-speed movie camera (Hycam). Timing marks were provided by an internal timing light 

n f-- Air supply Lc." 
Figure 1. Schematic diagram of apparatus to produce large bubbles 
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driver running at 100 Hz. Quantitative information was extracted by projecting the high-speed 
films onto a digitizing pad and tracing the outline of each bubble. The bubble volume was 
estimated by revolving the bubble profile around the pipe axis by 180'. 

The experiments revealed several regimes of bubble behaviour over the conditions tested. At 
low flow rates and large pipe diameters there is such significant penetration of liquid into the pipe 
(back-flooding) that the pipe exit is not a site for bubble formation. This means that the static 
bubbling regime described for small orifices by McCann and Prince' does not exist for large 
orifices where a stable static interface as large as the pipe diameter cannot be maintained. As the 
flow rate is increased, a transition region is entered where large irregular bubbles are inter- 
mittently formed at the pipe exit. Upon further flow rate increase the double-bubbling regime is 
entered. No distinct single-bubbling or single-pairing regimes (as described by McCann and 
Prince') were observed for large orifices. The first bubble in a doublet grows and departs with 
little influence from bubbles which have been released previously. The second bubble is elongated 
along the pipe axis and departs prematurely under the strong influence of the flow field induced 
by the movement and distortion of the first bubble. It is swept very quickly upwards into the first 
bubble and the two form a very unstable large bubble which quickly shatters. The cycle then 
repeats itself. After another transition region in which 'double-bubbling-type' bubble-to-bubble 
interaction takes place between more than two consecutive bubbles, the final regime of continu- 
ous interaction is entered. Here all bubbles are heavily influenced by the previous bubbles 
released. This is the turbulent regime described by McCann and Prince.' 

A key result of the experiments was that when Q and D are the quantities varied, the regime 
boundaries lie on lines of constant Froude number ( F =  QIV/ (gD' ) ) .  Note that McCann and 
Prince' also identified the capacitance of the chamber supplying the orifice as a governing factor 
in determining the bubbling regime, but this quantity was not varied significantly in Reference 8. 

NUMERICAL MODEL 

The numerical procedure is discussed in detail in Reference 13 and in brief in Reference 14. It uses 
an approach similar to the SOLA-VOF t e~hn ique '~  and solves the two-dimensional, transient 
form of the Navier-Stokes equations using a volume-tracking technique to specify the position of 
the gas-liquid interface. This interface is advected using the donor-acceptor algorithm of Hirt 
and Nichols.16 Because the interface advection algorithm contains an inherent restriction that the 
Courant number be less than unity, an explicit scheme is used to advance the underlying flow field 
solution in time. 

Model geometry 

The application of the numerical model to the experiments will now be described. A cylindrical 
co-ordinate system (r, z )  assuming axisymmetry about the centreline of the pipe is used and 
extends to a radius of 0.688 m. The boundaries of the air delivery pipe are modelled by blocking 
control volumes at the appropriate radius. All solid boundaries are modelled with zero-penetra- 
tion, free slip boundary conditions. Since the near-wall grid is too coarse to resolve the boundary 
layer, a free slip boundary condition provides a more accurate representation of the near-wall 
velocity profile than does the no-slip condition. A discussion of this point can be found in 
Reference 17. The depth of liquid is matched to the experiments and is equal to 1.067 m for all 
runs. The initial condition is a quiescent liquid with a horizontal gas-liquid interface at the pipe 
exit (as shown in Figure 1). 
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In order to save storage and increase speed, a non-uniform grid is used. The r-direction grid is 
designed to be used for any of the four pipe diameters (25.4,50.8,76.2 and 101.6 mm) by specifying 
a uniform grid region extending from r=O to 0.010 16m, twice the radius of the largest pipe. 
Within this region 6r =4.23 mm, so that two control volumes must be blocked to equal the actual 
pipe wall thickness. This fir also ensures that all four possible pipe radii fall on control volume 
boundaries. From r=0.01016 to 0.688 m dr increases linearly by 0.075 15 mm each control 
volume to give a total of 105 control volumes in the r-direction. 

The z-direction grid contains 190 control volumes. A uniform region with 62 = 4.23 mm extends 
24 control volumes, or twice the radius of the largest pipe, upwards from the exit of the pipe. 
From this concentrated region the control volumes increase in size linearly with z towards the top 
and bottom of the solution domain. The full domain contains 19 950 control volumes. A typical 
run in this paper advances the solution to t =0.2 s in 2000 time steps and requires approximately 
40 min CPU time on a two-pipe Cyber 205. 

Gas presslire model 

The gas volume in the pipe and attached bubble is calculated from the volume fraction of liquid 
field, f :  Changes in this volume result directly from changes in the ffield calculated by the 
interface advection algorithm in response to the calculated velocity field. The gas pressure model 
adds 3.64 1 to this volume to account for the chamber supplying the pipe. The gas pressure is 
adjusted each time step on the basis of the influx of a constant mass flow rate into this total 
volume and an isentropic expansion,'compression of the gas volume. 

RESULTS AND DISCUSSION 

The model was run over a variety of conditions in the experimental run matrix 
(25.4 GD < 101-6 mm, 5 d Q d 50 1 s -  '1. Several features of bubble growth identified in the experi- 
ments will now be compared with the numerical results. The first is the penetration of liquid down 
the pipe centreline, followed by a discussion of the toroidal bubble shape during the initial growth 
stage. Next. the oscillatory nature of bubble growth is considered, as is the behaviour of the model 
during necking and departure. Finally, the model's ability to predict the bubble volume in the 
double-bubbling regime will be addressed. 

Centreline pcnetrutioii 

At low flow rates and large pipe diameters there is a strong tendency for liquid to penetrate 
down the centreline of the pipe. This is evident in the  experiment^'^ and constitutes a major 
source of back-flooding. The numerical results clearly show this tendency. A measure of centreline 
penetration is the vertical movement of the gas~-liquid interface on the pipe centreline. All 
computational runs show some initial upward movement at the centreline. At low flow rates and 
large pipe diameters this movement reverses and causes significant penetration of liquid into the 
pipe. However, for higher flow rates and smaller pipe diameters no such reversal occurs. Two 
simulations will now be presented to illustrate these effects. Figures 2, 3 and 7 are not the entire 
solution domain but rather a 0.5 x 0.5 mz region near the pipe exit. The time of each frame is 
given in both dimensional and non-dimensional forms (T= t,/(y/D)). 

Figure 2 is a prediction of 425 1 s -  ' flow through a 76.2 mm pipe. Although the interface on the 
pipe centreline initially moves upwards, a very significant tongue of liquid penetrates down the 
centreline o f  the pipe. In contrast, Figure 3 illustrates a 17 Is-' flow through a 25.4 mm diameter 
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Figure 2. Simulated large-bubble groNth for D=76,2 mm, Q=42.S F = X S  

pipe. Here the gas -liquid interface at the centreline moves strongly upwards throughout the 
entire simulation, preventing the formation of a penetrating liquid tongue. 

Figure 4 plots the vertical displacement of the gas-liquid interface on the centreline versus time 
for a number of simulations. The Froude number is shown at the end of each curve plotted. This 
figure illustrates the initial upward motion which occurs under all conditions investigated. At low 
Froude numbers this upward motion reverses and the vertical position begins to fall. However, as 
the Froude number is increased, a critical value i s  reached past which no reversal takes place and 
the top of the bubble moves upwards throughout the entire time the bubble is attached to the 
pipe. It i s  estimated that this critical Froude number is approximately 10. 

Another quantity of interest is the curvature of the surface at the pipe centreline. In Figure 2 the 
penetrating liquid on the centreline is concave towards the liquid side of the interface. This is also 
true during the early stages of Figure 3. However, in the latter case bubble growth is vigorous 
enough that the curvature changes to concave towards the gas side of the interface. This reversal 
of curvature is not a necessary condition for a reversal in the direction of movement on the 
centreline. A range of conditions exists where the curvature continues to be concave towards the 
liquid but the interface continues to move upwards. The critical Froude number for the curvature 
to become concave towards the gas is about 50. 
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Figure 3. Simulated large-bubble growth for D = 25.4 mm, Q = 17.0 1 s-  F = 53 

The reversal of curvature is shown in Figure 4 as a sudden jump in the vertical position of the 
interface. The reason for this discontinuity can be seen in Figure 3. The curvature reversal process 
involves the necking of the penetrating tongue of liquid and subsequent shedding of a droplet of 
liquid inside the bubble. At the instant contact is made, the vertical position on the centreline 
suddenly increases. 

The other back-flooding mechanism identified in the experiments was the necking and 
departure process. Because of the incomplete prediction of the departure process, it is difficult to 
determine the back-flooding boundary due to this mechanism. Some predictions show what 
appears to be quite substantial back-flooding by this mechanism. However, this occurs because 
the code is late in identifying departure. If proper departure had occurred, the pressure in the pipe 
would rise more quickly, reducing the tendency for liquid to enter the pipe. 

Initial toroidal bubble formation 

As stated previously, the initial movement of the gas-liquid interface on the pipe centreline is 
always upwards. Another feature that is ubiquitous over the range of conditions tested is that the 
bubble always begins its growth as a toroid. This means that although the movement is upwards 
at the pipe centreline, bubble growth is faster near the edge of the pipe. This can be clearly seen in 
Figures 2 and 3 and was also very apparent in the experimental  result^.'^ 
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Figure 4. Vertical movement of intcrface on centreline for various Froude numbers 

At the beginning of the simulations, pressure equilibrium exists across the gas-liquid interface. 
As the solution begins, an overpressure builds in the gas owing to the gas flow into the pipe. 
Growth at the pipe edge occurs in both the r- and z-directions, while at the pipe centreline the 
symmetry constrains growth to the z-direction only. An illustration of the initial behaviour is 
given by the streamline plots in Figure 5 for 43.6 1 s-  from a 50.8 mm pipe. The concentration of 
streamlines near the pipe edge indicates the higher velocity there compared with the pipe 
centreline. In later frames this preferential growth has resulted in the formation of a toroidal 
bubble. 

Oscillatory huhhlc growth 

When a bubble begins growth in a quiescent fluid, the pressure builds in the pipe to a value 
which exceeds that required to maintain a constant growth rate. The liquid accelerates away from 
the bubble until its momentum overexpands the bubble, causing the pressure to drop below that 
required for a constant growth rate. The result is oscillations in bubble pressure and volume. This 
phenomenon is discussed by Chen and Dhir' in connection with the vent-clearing process and 
can be predicted by a simultaneous solution of the extended Rayleigh equation and a gas pressure 
model for constant mass flow into the bubble. The model results clearly show the oscillatory 
bubble growth expected. 

Figure 6 shows that in general the bubble growth rate is properly predicted by the numerical 
model in the current study. However, the experimental oscillation amplitude is much smaller. 
Recall that the initial condition for the numerical results is a quiescent liquid with a horizontal 
gas4iquid interface at the pipe exit. The experimental work is based on observations made well 
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after start-up, when a quasi-steady, periodic state has been reached. This means that some overall 
circulation has been established in the tank and the local influence of the previous bubble released 
is present. The resulting upward liquid velocity near the pipe exit would assist the bubble growth 
process and reduce the gas overpressure required to overcome the liquids inertia near the pipe 
exit, thus accounting for the reduced oscillation amplitude observed experimentally. 

Departure 

Currently, the simulations progress only to the point where the bubble departs. The collapse of 
the model can be traced to the inability of the interface advection algorithm to maintain a distinct 
interface under the combined complications of oscillatory bubble growth, necking and departure 
at the pipe exit and the strong circulation induced by departure and subsequent deformation. 

Consider Figure 3, where 17 1 s -  is being ejected from a 25.4 mm pipe. During the intermedi- 
ate stages of bubble growth (0.75 < T <  1.2) the bubble is essentially centred on the pipe exit. As 
the bubble grows larger, the buoyancy force becomes quite significant and the bubble begins to 
lift. At T c 2  it rises so that its lower surface is at the pipe exit. As it rises beyond this point, the 
necking process begins (T= 2.8). As the bubble rises away from the pipe exit, the region between 
the pipe exit and the lower surface of the bubble becomes dominated by partially full control 
volumes. The primary result is that no distinct surface can be defined. Another important result is 
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Figure 7. Simulated large-bubble growth for D = 50.8 mm, Q = 29-7 1 s -  ', F = 19 
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that a continuous path of partially full control volumes connects the large bubble just produced 
to the gas in the pipe. As a consequence, the bubble continues to grow as though it were attached 
for some time after it appears to have departed. 

Dcpurture volume 

Since the simulations survive only up to the departure of the first bubble, a full simulation of 
a double-bubbling cycle has not been achieved. However, since the critical feature of the first 
bubble is that it is influenced very little by bubbles released before it, the simulations should 
display much the same behaviour as the first bubble in a doublet. On this basis a comparison of 
the departure volume predicted by the simulations will be made with experimental results in the 
double-bubbling regime. 

A simulation in the double-bubbling regime is given in Figure 7, where a flow rate of 29.7 1 s- 
from a 50.8 mm pipe is illustrated. The departure time for the model results is obtained by 
inspecting bubble profile histories such as given in Figure 7 and determining when the necking 
process is complete. This simulation indicates that departure occurs at 160 ms when the volume is 
4.6 1. A departure volume of about 5 1 was observed for these experimental conditions. 

Figure 8 shows the departure volume for all simulations in the double-bubbling regime 
compared with the experimental departure volumes observed. The model appears to predict the 
volume of the first bubble of a doublet very effectively. It is interesting to note that the very simple 
relationship developed by Davidson and Schuler’ correlates quite well with these results. It is 

V =  1-378Q1’2/~0’6 (1) 
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Figure 9. Grid independence test for D = 50.8 mm, Q = 43.6 1 s-’, F =  24 

and can be written as follows in dimensionless form: 

V/D’= 1.378 F ’” (2) 

This equation was developed by balancing the buoyancy force with the upward acceleration of 
the surrounding fluid for a growing spherical bubble. Departure was defined as the point when 
the growing sphere rises by an amount equal to its radius. This is similar to the visual criterion 
used to establish the departure volume for the current numerical model as discussed earlier. 

Grid independence 

Confidence of grid-independent results is gained from preliminary runs that were done with 
a 55 x 96 rather than a 105 x 190 grid. Up to the time of bubble departure these runs are very 
similar. A representative result is given in Figure 9, which shows the volume history for each grid 
resolution. After departure, when the interface becomes highly distorted, the grid resolution has 
a marked effect on interface advection. This effect occurs before grid dependences in the velocity 
field calculation become apparent. 

CONCLUSIONS 

It has been demonstrated that it is possible to numerically model several important features of 
large-bubble growth at  submerged orifices. The initial growth as a toroid and the penetration of 
liquid down the centreline are modelled very well. The bubble volume calculation has been 
demonstrated to be quite realistic, in accordance with experiments* and the model of Davidson 
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and Schuler.’8 The problems of effectively modelling departure and post-departure behaviour 
relate to the inability of the interface advection algorithm to maintain a distinct gas-liquid 
interface. Much work is still required in this area before solutions can be advanced significantly 
further in time and begin to show the type of bubble-to-bubble interaction which dominates the 
region above the pipe exit. 
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APPENDIX: NOMENCLATURE 

D 
E 
F 
9 

t 
T 
V 

Q 

pipe diameter 
Eotvos number (gDZp/a)  
Froude number ( Q / J ( g D ’ ) )  
acceleration due to gravity 
volume flow rate 
time 
dimensionless time ( r J ( g / D ) )  
volume 

Greek letters 

6r grid spacing in r-direction 
6Z grid spacing in z-direction 
P liquid density 
0 surface tension 
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